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4%

14,717,618,286*

* since 2013



Why so Few?
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“…because it would have hurt Yahoo’s ability to index and search message data…”


— J. Bonforte in NY Times



Q: can we search on encrypted data?
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Real-World Problem

• Major companies

• Microsoft, SAP

• Cisco, Google 

Research

• Hitachi, Fujitsu

• more…
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• Funding agencies

• NSF

• IARPA

• DARPA

• Startups

• too many to list



Q: what about real-world customers?
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Is this Real?
• Banks

• Government agencies (US & Europe)

• Fintech companies

• Tech companies

• Healthcare

• Biotech

• …
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Encrypted Search
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Encrypted Search
• Sub-field focused on designing 


• sub-linear algorithms over encrypted data

• search engines & databases


• Searchable (symmetric) encryption (SSE)

• keyword search over collection of encrypted files/documents

• ElasticSearch, Lucene, …


• Encrypted databases (EDBs)

• encrypted NoSQL & SQL (relational) databases

• Postgres, SQL Server, MongoDB, CouchDB, …
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Encrypted Search (Building Blocks)
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Property-Preserving 
Encryption (PPE)

Fully-Homomorphic 
Encryption (FHE)

Functional 
Encryption

Oblivious RAM 
(ORAM)

Structured 
Encryption (STE)Very leaky

Ω(n)

O(n)



Efficiency

LeakageFunctionality
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Core Primitive: Structured Encryption
• Schemes that 

• encrypt data structures (e.g., multi-maps, dictionaries, …)

• support private queries on encrypted structures


• Applications

• sub-linear searchable encryption (i.e., index-based SSE)

• encrypted NoSQL & SQL databases

• encrypted graph algorithms

• secure multi-party computation
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Structured Encryption  
[Chase-K.10]
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Setup(1k, DS) ⟶ (K, EDS) 

Token(K, q) ⟶ tk

Query(EDS, tk) ⟶ ans 

DS EDS

ans

tk



Desiderata
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Setup leakage

Query leakage

Size of EDS

Size of state

Size of token
Query time

ans

EDS

tk



Structured Encryption  
[Chase-K.10]

• Many variants of STE

• response-revealing

• EDS query reveals answer in plaintext


• response-hiding

• EDS query reveals encrypted answer


• non-interactive queries

• clients sends single message called a token


• interactive queries

• client and server execute multi-round protocol
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Background: Data Structures
• Dictionaries map labels to values 

	 


• Put: DX[ℓ2] := v2

• Get: DX[ℓ2] returns v2

• Multi-Maps map labels to tuples 
 
	 


• Put: MM[ℓ3]:= (v2,v4)

• Get: MM[ℓ3] returns (v2,v4)
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Structured Encryption: Encrypted Dictionary 
[Chase-K.10]
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Setup(1k, DS) ⟶ (K, EDX) 

Token(K, q) ⟶ tk

Query(EDX, tk) ⟶ ans 

DX EDX

ans

tk



Structured Encryption: Encrypted Multi-Map  
[Chase-K.10]
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Setup(1k, DS) ⟶ (K, EMM) 

Token(K, q) ⟶ tk

Query(EMM, tk) ⟶ ans 

MM EMM

ans

tk



Adversarial Models
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Persistent (Adaptive) Security  
[Curtmola-Garay-K.-Ostrovsky06,Chase-K.10]

• An STE scheme is (ℒS, ℒQ)-secure vs. a persistent adv. if


• it reveals no information about the structure beyond ℒS

• it reveals no information about the structure and query beyond 

ℒQ
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Snapshot (Adaptive) Security  
[Amjad-K.-Moataz19]

• We say that an STE scheme is ℒSnp-secure vs. a snapshot adv. if


• it reveals no information about the structure beyond ℒSnp
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Efficiency vs. Persistent Security
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Not Scientific!



Efficiency vs. Snapshot Security
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Leakage

26



Leakage-Parameterized Definitions 

[Curtmola-Garay-K.-Ostrovsky, Chase-K.10]

• This area is about tradeoffs

• but traditional cryptographic definitions don’t capture tradeoffs


• in 00’s, different approaches were proposed to capture leakage

• #1: limit adversary’s power in the proof

• #2: make assumptions on data (e.g., high entropy)


• Original motivations for leakage-parameterized definitions

• Approaches #1 & #2 are misleading (sweep leakage under the rug)

• Leakage should be made explicit and not be implicit


• gives clear target for cryptanalysis

• makes it (somewhat) easier to compare schemes
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Modeling Leakage

• Each scheme has a leakage profile: 𝚲 = (ℒS, ℒQ, ℒU)

• where ℒS = (patt1, …, pattn) is the Setup leakage

• ℒQ = (patt1, …, pattn) is the Query leakage

• ℒU = (patt1, …, pattn) is the Update leakage


• Each “operational” leakage is composed of leakage patterns

• (patt1, …, pattn )
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Common Leakage Patterns

• qeq: query equality

• a.k.a. search pattern


• rid: response identity

• a.k.a. access pattern


• qlen: query length
• trlen: total resp. length

• rlen/vol: response length

• a.k.a. volume pattern
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• req: response equality

• mqlen: max query length

• mrlen: max resp. length

• srlen: sequence resp. length

• dsize: data size

• usize: update size

• did: data identity




Example Leakage Profiles
• The “Baseline” leakage profile for response-revealing EMMs

• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, (qeq, rid), usize)


• The “Baseline” leakage profile for response-hiding EMMs

• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, qeq, usize)


• Several new constructions have better leakage profiles

• AZL and FZL [K.-Moataz-Ohrimenko18]

• VLH and AVLH  [K.-Moataz19]
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Structured Encryption vs. Other Primitives
• Encrypted structures appear implicitly throughout crypto


• Oblivious RAM can be viewed as a

• response-hiding encrypted array 

• with leakage profile 𝚲ORAM = (ℒS, ℒQ, ℒU) = (dsize, vol, vol)


• Garbled gates can be viewed as 

• response-revealing 2x2 arrays

• 𝚲GG = (ℒS, ℒQ) = (dsize, qeq)
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How do we Deal with Leakage?
• Our definitions allow us to prove that our schemes

• achieve a certain leakage profile

• but doesn’t tell us if a leakage profile is exploitable?


• We need more than proofs
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The Methodology
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Leakage Analysis Proof of Security
Leakage Attacks/

Cryptanalysis

• Leakage analysis: what is being leaked?

• Proof: prove that scheme leaks no more 

• Cryptanalysis: can we exploit this leakage?



Leakage Attacks
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Leakage Attacks
• Target


• query recovery: recovers information about query

• data recovery: recovers information about data


• Adversarial model

• persistent: needs EDS and tokens

• snapshot: needs EDS


• Auxiliary information

• known sample: needs sample from same distribution

• known data: needs actual data


• Passive vs. active

• injection: needs to inject data
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Leakage Attacks
• Leakage cryptanalysis is crucial but…


• …unfortunately much of the attack literature 

• lacks experimental rigor

• is just plain wrong

• overhyped


• there is a need for higher standards
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Leakage Attacks
• IKK attack

• highly cited but doesn’t work

• too few keywords, auxiliary & test data correlated, …


• Count attack

• based on strong assumptions

• adversary needs to know ≥ 75% of client’s data!


• Some target very niche applications & rely on strong assumptions
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Leakage Attacks
• Should we discount attacks? Of course not 

• More rigorous

• Less hyperbolic

• More upfront about attack limitations & assumptions


• [Blackstone-K.-Moataz’20]: Revisiting Leakage-Abuse Attacks


• [KKMSTY’21]: re-implementation & re-evaluation of most known 
attacks
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How Should we Handle Leakage?
• Approach #1: ORAM simulation

• Store and simulate data structure with ORAM

• polylog overhead per read/write on top of simulation

• still leaks information that is exploitable


• [Kellaris-Kollios-O’neill-Nissim’16, Blackstone-K.-Moataz’20] 


• Approach #2: Custom oblivious structures
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How Should we Handle Leakage?
• Approach #3: Rebuild [K.14]

• Rebuild encrypted structure after t queries

• Set t using cryptanalysis

• Open question: can you rebuild encrypted structures?

• Yes [K.-Moataz-Ohrimenko’18, George-K.-Moataz’21]


• Approach #4: Leakage suppression

• Suppression compilers

• Suppression transforms
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Leakage Suppression
• Techniques to reduce/eliminate leakage


• Suppressing query equality (aka access pattern)

• general compiler [K.-Moataz-Ohrimenko’18, Geoge-K.-Moataz’21]


• Suppressing co-occurrence (needed by IKK and Count attacks)

• see appendix in [Blackstone-K.-Moataz19]
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Leakage Suppression
• Suppressing volume (aka response size)

• padding & clustering techniques [Bost-Fouque17]

• computational techniques  

[K.-Moataz19, Patel-Persiano-Yeo-Yung’20]


• “General-purpose” suppression

• worst-case vs. average-case leakage [Agarwal-K.1’9]

• distributing data [Agarwal-K.’19]
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Leakage Suppression
• New tradeoffs to explore

• leakage vs. correctness [K.-Moataz19]

• leakage vs. latency [K.-Moataz-Ohrimenko18]
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Thanks!
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